Data Mining for Gene Networks Relevant to Poor Prognosis in Lung Cancer Via Backward-Chaining Rule Induction
نویسندگان
چکیده
We use Backward Chaining Rule Induction (BCRI), a novel data mining method for hypothesizing causative mechanisms, to mine lung cancer gene expression array data for mechanisms that could impact survival. Initially, a supervised learning system is used to generate a prediction model in the form of "IF THEN " style rules. Next, each antecedent (i.e. an IF condition) of a previously discovered rule becomes the outcome class for subsequent application of supervised rule induction. This step is repeated until a termination condition is satisfied. "Chains" of rules are created by working backward from an initial condition (e.g. survival status). Through this iterative process of "backward chaining," BCRI searches for rules that describe plausible gene interactions for subsequent validation. Thus, BCRI is a semi-supervised approach that constrains the search through the vast space of plausible causal mechanisms by using a top-level outcome to kick-start the process. We demonstrate the general BCRI task sequence, how to implement it, the validation process, and how BCRI-rules discovered from lung cancer microarray data can be combined with prior knowledge to generate hypotheses about functional genomics.
منابع مشابه
Backward chaining rule induction
Exploring the vast number of possible feature interactions in domains such as gene expression microarray data is an onerous task. We describe Backward-Chaining Rule Induction (BCRI) as a semi-supervised mechanism for biasing the search for IF-THEN rules that express plausible feature interactions. BCRI adds to a relatively limited tool-chest of hypothesis generation software and is an alternati...
متن کاملSearching for Meaningful Feature Interactions with Backward-Chaining Rule Induction
Exploring the vast number of possible feature interactions in domains such as gene expression microarray data is an onerous task. We propose Backward-Chaining Rule Induction (BCRI) as a semi-supervised mechanism for biasing the search for plausible feature interactions. BCRI adds to a relatively limited tool-chest of hypothesis generation software, and it can be viewed as an alternative to pure...
متن کاملType-2 Fuzzy Hybrid Expert System For Diagnosis Of Degenerative Disc Diseases
One-third of the people with an age over twenty have some signs of degenerated discs. However, in most of the patients the mere presence of degenerative discs is not a problem leading to pain, neurological compression, or other symptoms. This paper presents an interval type-2 fuzzy hybrid rule-based system to diagnose the abnormal degenerated discs where pain variables are represented by interv...
متن کاملUsing Prior Knowledge and Rule Induction Methods to Discover Molecular Markers of Prognosis in Lung Cancer
An iterative computational scientific discovery approach is proposed and applied to gene expression data for resectable lung adenocarcinoma patients. We use genes learned from the C5.0 rule induction algorithm, clinical features and prior knowledge derived from a network of interacting genes as represented in a database obtained with PathwayAssist to discover markers for prognosis in the gene e...
متن کاملData-driven Backward Chaining
CLIPS cannot effectively perform sound and complete logical inference in most real-world contexts. The problem facing CLIPS is its lack of goal generation. Without automatic goal generation and maintenance, Forward chaining can only deduce all instances of a relationship. Backward chaining, which requires goal generation, allows deduction of only that subset of what is logically true which is a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer Informatics
دوره 3 شماره
صفحات -
تاریخ انتشار 2007